Amplero: A Smarter Way to Reduce Customer Churn

When it comes to reducing customer churn, knowledge is power especially if it’s in the form of rich behavioral insight. As marketers we do everything we can to understand how customers behave and why they leave, so that we can get prevent it.
But what marketers often get is a churn explanation rather than a true prediction of churn risk. So how do you get in front of the problem? How do you predict who may leave with enough accuracy and sufficient time to intervene in ways that influence their behavior?

For as long as marketers have been trying to address the problem of churn, the traditional approach to churn modeling has been to “score” customers. The problem with churn scoring is that most retention models rate customers with a score that depends on manually creating aggregate attributes in a data warehouse and testing their impact in improving the lift of a static churn model. The process can take several months, from analyzing customer behavior through deploying retention marketing tactics. Furthermore, since marketers typically update customer churn scores on a monthly basis, rapidly emerging signals that indicate a customer may leave are missed. As a result, retention marketing tactics are too late.

Amplero, which recently announced the integration of a new approach to behavioral modeling to fuel its machine learning personalization, provides marketers a smarter way to predict and prevent churn.

What is Machine Learning?

Machine learning is a type of artificial intelligence (AI) that provides systems with the ability to learn without being explicitly programmed. This is typically accomplished through continuously feeding data to and having software alter algorithms based on the results.

Unlike traditional churn modeling techniques, Amplero monitors sequences of customer behavior on a dynamic basis, automatically discovering which customer actions are meaningful. This means that a marketer is no longer reliant on a single, monthly score indicating whether a customer is at risk of leaving the company. Instead, the dynamic behavior of each individual customer is analyzed on a continuous basis, leading to more timely retention marketing.

Key benefits of Amplero’s behavioral modeling approach:

With Amplero marketers can achieve 300% better churn prediction accuracy and up to 400% better retention marketing than when using traditional modeling techniques. Having the ability to make more accurate and timely customer predictions makes all the difference in being able to develop a sustainable capability for reducing churn and boosting customer lifetime value.

For more information or to request a demo, please visit Amplero.

Exit mobile version